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First Near Field Simulation

 Because the near field behind the grating is of
interest an accordant propagation method is
preset in the Light Path Editor.

[ 1: Light Path Editor (Light Path Diagram #11*

D".‘-'\:- Path l’:. Detectors ' hnalyzers‘

Detector Last Light Path Element Linkage

Tvoe lndex Channel i Sum
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Virtusl Screen
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Virtusl Screen

___ HETENS Simulation Type ¢ | Field Tracing

o |In order to calculate the near field click “Go!”.




First Near Field Results 1

[B) 3: Virtual Screen £600 after Sinusoidal Gratin... | = || @ |[E3s] [ 3: Virtual Screen #600 after Sinusoidal Grating £1 (T)
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« 3 periods of the near field’s sinusoidal phase distribution with
a 2Pi modulus step due to a constant phase offset.

« Now change the displayed physical quantity from “phase” to
“amplitude” by clicking the according symbol.
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First Near Field Results 2

m 3: Virtual Screen #600 after Sinusoidal Grating #1 (T)

Daa Von
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-12 - 12

Locally Polarized Hammonic Field - Bx Amplitude  Zoom: 1 315x1

The amplitude of the field is also varying a bit.

To increase the resolution go to the 15t line in the “Detector”
tab in the Light Path Diagram and double click in the column
“Propagation Method”.
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First Near Field Results 3

Edit Propagation Methed
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Click “Edit”.
Change the resolution by a factor of 3.
Confirm both dialogs with “Ok”.

Then repeat the simulation with “Go!”.




First Near Field Results 4

« You see again 3 periods of the phase behind the
grating structure.

« Switch again to the amplitude view as shown
before and expand the window.




STEP 3

Analysis of the Efficiencies of the
Propagating Orders



Configuration for Efficiency Analysis 1

« Now let's consider efficiencies.

« With the Grating Efficiency Analyzer you can
investigate the efficiencies for every order.

« Double click the “Grating Efficiency Analyzer (2D)”
in the Light Path Diagram.

i e i T T e
mating Efficiency

Analyzer (20)

Double
Click %m




Configuration for Efficiency Analysis 2

rIEu::Iithratir'ng Efficiency Analyzer ° By d@f&Ult the G rating
|:IE‘—'I:aI{:uIatf: Efficiency of all Orders of the Field Ef-f-iCIenCy Analyzer CalCU|ateS
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Channels to be Analyzed . .

S S reflection will be calculated
o and displayed in a polar

Polar Diagram and Table d iagra m.

[] Intensity Distribution at Distance of

Rayleigh Coefficients (Ampitude and Phase) For some further results in
L2zl T Diresten table form check “Summed
[] Ey-Direction [] TE-Direction . . .
Transmission, Absorption, and
Reflection.

[ Summed Transmission, Ahsorption, and Reflection ]

| Ok || Cancel |[ Help |

o Then click “Ok”.




First Efficiency Simulation

« In the Light Path Editor change the Simulation
Type from “Field Tracing” to “Grating Efficiency
Analyzer (2D)”.

e Then click “Gol”.




First Efficiency Results 1

m 5: Efficiency Diagram

o | = You get a polar diagram
showing the directions of
the incident wave and the
directions as well as the
efficiencies of the reflected
and transmitted orders.

— Feflected —Trans_mitled — | ncident VWave Move the mouse into the
diagram and zoom in via
the scroll wheel.

At first you'll see only the
strongest orders.




First Efficiency Results 2

« The more you zoom in the more orders you see.

« For more details switch to the “Table” tab.

I‘\,}
Diagram h‘




First Efficiency Results 3

m 4: Efficiency Diagram

Table

Label w-Yalue

0.0010254 %
5.96TE-OR %
0.0018156 %
0.0026568 %
0.0014505 %
0.0020219 %
0.015303 %
0.10674 %
025302 %
027118 %
011524 %
0.00585196 %
020312 %
0.070362 %
0.070056 %

y-Value

025302 % T+1

Here you see the angle
and the efficiency for
each reflected and
transmitted order.

E.g. scroll down to the
zeroth transmission

order (TO).

Table with efficiencies
can be copied into
clipboard or converted
into a complex field of
VirtualLab via the
context menu (right
mouse button).




STEP 4

Same Investigations of a Grating with a
Period in the Range of the Wavelength



Change of the Grating Setup

The scenario till now showed good paraxial behavior. So

the results are quite suitably in accordance with the scalar
grating theory.

Now let’s change the grating period from “10pm”
“Tum”. The modulation depth remains “Tpm”.

Thus follow some previous demonstrated steps...
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Bxtension

N
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Explanations

« Scenarios like this with a wavelength of 532nm
and a grating period of Tpm, i.e. a structure in the
range of the wavelength, typically ask for a
rigorous analysis which the Fourier Modal Method
offers.

So VirtuallLab is predestined for such
investigations.

This constellation results in only 3 reflecting and 5
transmitting orders. Thus the analysis is quite fast.




Second Efficiency Results

=
m T: Efficiency Diagram

Diagram | Table

m T: Efficiency Diagram
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m T: Efficiency Diagram
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m T: Efficiency Diagram

Diagram Table

Reflected

Transmitted

Label | xValue

y-Value

x-Value

y-Value

R-1
RO

-32.131°
8.5924E-21°
3213

0.023306 %
0.0052458 %

0.029906 % IT

-46.737°
-21.38%°

21.383°

46,737

£.1858 %
38602 %
10.358 %
38602 %
6.1858 %




Second Near Field Simulation

« Forthe near field change the simulation type back
to “Field Tracing”.

« Then run the simulation by clicking “Go!”.
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Second Near Field Results 1

m 8: Virtual Screen #600 after Sinusoidal Grating #1 (T)

Light View | Data View

3 R
1<

NN

T T
-1.2 -0.4 o 04

Position [pm]

Locally Polarized Hammonic Field - Bx

Again 3 periods are displayed.

With these small grating structures there is no longer a

sinusoidal phase distribution because of the occurring
resonance effects.

Switch to the amplitude view and the cubic interpolation.

'EY 'Ez @ngE A%|E?€.E}'-:Dml:lined '
'cﬁnﬁlvaﬂvu e[ - ]% Resultsm‘

7|L




Second Near Field Results 2

m 8: Virtual Screen 2600 after Sinusoidal Grating 1 (T)

« The amplitude is also dramatically changed.

« Now it varies from 0.2 to almost 1.

« This is a typical phenomenon for gratings with a
period close to the wavelength.




CONCLUSION



Conclusion

« VirtualLab allows the rigorous simulation of
surface gratings.

« The Grating Toolbox allows the simulation of near

field and diffraction efficiency of gratings.
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