
Programmable Building Blocks,
Components and Detectors of VirtualLab™

Authors: Christian Hellmann, Michael Kuhn (LightTrans)
Related Tutorials: Tutorial 501
Requirements: VirtualLab™ 5.5 – Starter Toolbox

Tutorial 507 (1.0)

http://www.lighttrans.com/documents_search.html?tx_abdownloads_pi1[sword]=501&no_cache=1

Contents

• Introduction
– Goal of the programming
– Programming language
– Some references

• Programmable Objects in VirtualLab
– Modules
– Snippets

• Snippets for Programmable Components
– The concept
– Input and output of the Programmable Component
– Examples

Contents

• Programming Environments
– Using the VirtualLab editor
– Using Visual Studio Projects
– How to setup a project
– How to include C++ DLLs
– MATLAB® and VirtualLab
– Example of DLLs within Snippets

• Programmable Detector
– Concept
– Overview of output types

Introduction

Goal of Programming in VirtualLab

• VirtualLab is the first Field Tracing software on the
market.

• The requirements on modern optical simulation
are getting more and more complex.

• LightTrans offers you a lot of simulation
techniques, but you are enabled to run your own
algorithms in VirtualLab as well.

• The programming interface within VirtualLab
allows the customization of building blocks as well
of components and detectors.

• So this allows full flexibility in system simulation.

Programming Language

• This overview is not a programming course. It is a
starting point for “learning by doing”. Own
exercises are recommended.

• Used Programming language: C#
– Object oriented language similar to C++.

• .NET Framework
– Release 2002
– Large library of functions, classes, especially GUI

elements that can be used.

Programming Language

• C# - some references
– Beginning C# 3.0: An Introduction to Object Oriented

Programming (Jack Purdum, Wiley Publishing Inc.,
2008)

– C# 3.0: A Beginner’s Guide (Herbert Schildt, McGraw
Hill, 2009)

– Professional C# 2008 (Christian Nagel, Bill Evjen, Jay
Glynn, Morgan Skinner, Karli Watson, Wiley Publishing
Inc., 2008)

– C# 3.0 The Complete Reference (Herbert Schildt,
McGraw Hill, 2009)

http://www.amazon.com/Beginning-3-0-Introduction-Oriented-Programming/dp/0470261293/ref=sr_1_25?ie=UTF8&s=books&qid=1273571169&sr=1-25
http://www.amazon.com/Beginning-3-0-Introduction-Oriented-Programming/dp/0470261293/ref=sr_1_25?ie=UTF8&s=books&qid=1273571169&sr=1-25
http://www.amazon.com/3-0-Beginners-Guide-Herbert-Schildt/dp/0071588302/ref=ntt_at_ep_dpi_6
http://www.amazon.com/Professional-2008-Wrox-Guides/dp/0470191376/ref=sr_1_1?ie=UTF8&s=books&qid=1273592719&sr=1-1
http://www.amazon.com/3-0-COMPLETE-REFERENCE-Herbert-Schildt/dp/0071588418/ref=ntt_at_ep_dpi_5

Programming Language

• .NET Functions
– .NET data type (double, int, etc)
– e.g. Math.Sin(), GUI, etc.
– http://msdn.microsoft.com/en-us/library/67ef8sbd(VS.80).aspx

• VirtualLab™ Programming
– Access to classes and functions of the VirtualLab

library (VirtualLabAPI).
– Programming Reference available in the Help menu of

VirtualLab.

http://msdn.microsoft.com/en-us/library/67ef8sbd(VS.80).aspx

Some C# Syntax

• Comments:
/* comment (multiple lines) */
// comment (1 line)

• Variable types
int i; double x; float y;

• Math-function:
y=Math.Sin(x); y=Math.Abs(x);

• use “;” at end of a line
• to return a value use
return x;

Levels for Programming in VirtualLab

Programming within VirtualLabAPI.dll

• Programming of the VirtualLabAPI is being done
by LightTrans and is restricted to LightTrans.

• Currently about 3000 files and 800.000 lines of
code.

• Highest flexibility, but design rules are to be
applied.

• Code is NOT available to externals, but classes
and methods can be used in snippets, modules.

• Many third party DLLs are used from
VirtualLabAPI, development licenses for using
these DLLs are restricted to LightTrans.

VirtualLab Modules

• VirtualLab Modules can be written in C# or in VB
.NET.

• 100-1000 lines of code are typically within a
module.

• Classes and functions of .NET and
VirtualLabAPI.dll and other external references
can be used.

• This allows the user a very flexible way to solve a
custom task.

VirtualLab Snippets

• VirtualLab introduced the option to define
different parts of the simulation by the
specification of snippets:
– Source code block which represents just the body of

some function.
– Typically 10-100 lines of code are written.
– Within a snippet no classes or functions can be

specified.
– The usage of function will be added in 2013.

VirtualLab Snippets

• It is also allowed to add external references to
snippets. This allows to call functions from
external DLLs. Those DLLs can be
– .NET DLLs
– C++ DLLs
– DLLs originating from MATLAB® code. For this we

refer to the Tutorial 501 “Using MATLAB® Functions
from VirtualLab Snippets and Modules“

http://www.lighttrans.com/documents_search.html?tx_abdownloads_pi1[sword]=501&no_cache=1
http://www.lighttrans.com/documents_search.html?tx_abdownloads_pi1[sword]=501&no_cache=1

Using external DLLs and user rights

• Using external DLLs requires the following
Windows user rights:
– During the execution a folder “DLLCache” is created

and manipulated. The folder is placed into the
installation directory of VirtualLab.

– If VirtualLab has been installed at the system drive
(typically C:), then Administrative rights are required.
That is VirtualLab has to be started with “Run as
Administrator”.

– Alternatively, VirtualLab can be installed at another
drive (not C:) where ordinary user rights are sufficient
to create and manipulate folders.

Restrictions

• VirtualLab Advanced
– No restriction with respect to the programming

features.

• VirtualLab (Standard)
– Programmable Components and Programmable

Detectors are read only, i.e. the source code cannot be
modified.

• VirtualLab Trial
– Cannot run modules.
– All programmable building blocks based on snippets

are read only.

Snippet-based Elements in VirtualLab

Programmable (Mode Planar) Light Source

• Light source allows programming of:
– Lateral distribution
– Spectral distribution (by spectrum generator)
– Mode locations
– Weights for modes

Source Catalog:
Modes on a Circle
(λ = 405 nm).

Programmable Transmission

• Idealized effects that can be described by a trans-
mission function can be formulated via snippets.

• The user specifies the transmission as a function
of the position (x,y).

Programmable Interface

• The user can define the height function of an
optical interface ℎ(𝑥, 𝑦).

• Additionally, the partial derivatives
𝜕ℎ
𝜕𝜕

𝑥, 𝑦 and
𝜕ℎ
𝜕𝑦

(𝑥, 𝑦) can be specified.

Interface Catalog:
Axicon
Interface 20deg.

Programmable Medium

• Within a programmable medium the user can
define a 3D index modulation.

Media Catalog:
Coated Slanted Grating
Medium.

Parameter Run: Programmable Mode

• The Parameter Run within VirtualLab allows the
variation of parameters in a user defined mode
(alternatively scanning, random and standard
mode can be used).

• The user defined selection of parameters is
important if the parameter to vary shall be
dependent from each other or if the user likes to
evaluate the output of the Parameter Run in a
specific way.

ParameterRun: Programmable Mode

• Example:
– Scenario 178.01: LCD Source Simulation
– The parameters Wavelength and Weights are dependent

from each other. The positions are varied additionally.

Result of Scenario 178.01:
An array of RGB pixels which
can be understood as pixel
array within an LCD. The field
can be used for further
simulations.

Programmable Material

• The user can define the dispersion formula in a
snippet.

Materials Catalog: Abbe Number V_d Material.

Programmable Component

• The programmable component allows the definition
of a complete component and its propagation
function.

• The developer of the snippet can specify the output
of the component dependent on the incident field
as well as on structural parameters.

• The programmable component has no extension,
so its effect is only described in one plane.

• Further information are given below, in the Manual
of VirtualLab and the Programming Reference (Help
menu in VirtualLab).

Programmable Detector

• The programmable detector allows the generation of
DetectorResult objects dependent on the input light
field object.

• The user can extract information from the incident
field and out put them via:
– Physical Value (numbers + physical property)
– Harmonic fields (ComplexAmplitude objects)
– Data Arrays

• Output of physical values can further be used for
parametric optimization.

• Further information are given below, in the Manual of
VirtualLab and the Programming Reference (Help
menu in VirtualLab).

Programmable Components

Concept of Programmable Component

• The programmable component allows to change
the incoming field in an arbitrary way by the
specification of a snippet.

• Within the Light Path Diagram the geometry of the
programmable component is only a plane. So the
output field of the programmable component has
the same position as the input field in the light
path. In case of reflection, the orientation is
changed as for the reflection at a single interface.

• This concept will be extended later in 2013 to allow
tilts and to define an extension of the component.

Concept of Programmable Component

• For the internal geometry specification, the
programmable component allows to specify a list of
optical interfaces, optical materials and optical
media and a reference data array.

• These system building blocks can be used within
the snippet which calculates the output field from
the input field.

• If the programmable component is used within the
Parameter Run, the global parameters of the
snippet and also the parameters of the optical
interfaces, media and materials can be varied.

Edit Dialog of the Programmable Component

Dialog of the Source Code Editor

• Global Parameters:
• Values
• Materials
• Media
• Interfaces
• Data Array

Input/Output: The HarmonicFieldsSet Class

• The type of the light field object which is used for
input and output within the programmable
component is HarmonicFieldsSet.

• A HarmonicFieldsSet object consists of a number
of harmonic fields which can be accessed by an
indexer.
– HarmonicFieldSet[int i] can be used to set or get the

harmonic field at index i.

• Generation of HarmonicFieldsSet:
– Copy-Constructor: new HarmonicFieldsSet(hfsOld).
– Empty Constructor: new HarmonicFieldsSet().

Input/Output: The HarmonicFieldsSet Class

• Additionally the HarmonicFieldsSet (HFS) offers a
variety of support methods which can be used to
modify the object:
– Add(ComplexAmplitude ca) (adds a complex amplitude

to the HFS).
– Remove(int i) (removes the complex amplitude at

index i).
– Insert(ComplexAmplitude ca, int i) (inserts the complex

amplitude at the index i).

Input/Output: The HarmonicFieldsSet Class

• Typical loop over all members of the
HarmonicFieldsSet:

Input/Output: The ComplexAmplitude Class

• The ComplexAmplitude class within the
VirtualLabAPI.dll is used to represent a harmonic
field.

• Within a ComplexAmplitude object the most
important properties are:
– ca.Wavelength (vacuum wavelength of the ca).
– ca.IsLocallyPolarized (flag whether locally polarized).
– ca.Field (matrix of FieldValues in case of global

polarization).
– ca.FieldX, ca.FieldY (matrices of FieldValues in case of

local polarization).

Input/Output: The ComplexAmplitude Class

– ca.JonesVector (Jones vector of the ca, only accessible
if ca is globally polarized).

– ca.EmbeddingMedium (the medium in which the ca is
defined).

– ca.LFO_CoordinateSystem (position and orientation of
the ca).

• Additionally the ComplexAmplitde class supports
an indexer. By calling ca[x,y,false] the data matrix
for Ex at the pixel coordinate (x,y) can be easily
accessed.

• The ComplexAmplitude class also offers a lot of
methods to vary or evaluate the harmonic field.

Programmable Component: Rotate and Shift

Components Catalog:
Rotate and Shift Component.

Input Output

Rotate and Shift: Result

Development of Snippets and Modules

VirtualLab Source Code Editor vs. Visual Studio

• The development of snippets can be done by the
usage of the source code editor which is
integrated in VirtualLab.

• This source code editor supports:
– Syntax highlighting.
– (Un)Collapsing (regions).
– Comment/Uncomment consecutive code lines.

• Alternatively, the development of snippets can be
done within Microsoft Visual Studio, which
provides additionally the syntax completion.

Download and Install Visual Studio

• The Visual Studio Express version can be
downloaded for free.
(http://www.microsoft.com/germany/express/do
wnload/default.aspx)

• The main differences between Professional and
Express version are:
– No support of SQL Server.
– No usage of Team Foundation Manager.
– Development of application in the language F#.
 Visual Studio 2010 Express helps you to

develop Snippets in VirtualLab.

http://www.microsoft.com/germany/express/download/default.aspx
http://www.microsoft.com/germany/express/download/default.aspx

How to Setup Visual Studio Project

• Open Visual Studio 2010 and select New Project

How to Setup Visual Studio Project

How to Setup Visual Studio Project

Double
Click

Example: Syntax Completion

Snippets and DLLs

• Using a Visual Studio project simplifies the
development of snippets and modules since
syntax completion is available.

• So far the entire code was written in snippets.
– The source code written in Visual Studio can be copied

into the snippet.

• From the snippet, it is also possible to call
functions from external DLLs.
– Visual Studio can be used to write such DLLs. Then

also functions and class definitions can be used for
more complex applications.

– The DLL is to be added as external reference.

Advanced Settings

• Advanced Settings of Snippet:

Example: Using a DLL

• Code within DLL:

Example: Using a DLL

• Code within Snippet:

Usage of C++ DLLs

• Also C++-DLLs can be used.
– In the C++ DLL use the “extern” statement:

– Write a C# DLL and use “DllImport” statement to

provide access to C++ function from C#.

– Use imported functions e.g. as follows:

Programmable Detector

Concept of Programmable Detector

• The programmable detector of Virtual Lab
enables the user to specify his own merit function
in his system analysis.

• The programmable detector is defined by a
snippet that evaluates the incident field (type:
HarmonicFieldsSet) and generates an arbitrary
number of detector result objects.

• Additionally the user can specify the number of
numerical values that shall be used within the
parametric optimization. This setting is done
within the edit dialog of the detector.

Edit Dialog of the Programmable Detector

Detector Results

• The programmable detector allows a snippet that
generates an array of DetectorResultObjects
dependent on the incident field.

• Example:

• Typical data types within DetectorResultObjects:
– List<PhysicalValue>
– DataArray1D
– DataArray2D

Output: List<Physical Value>

• For the output of numerical data the
List<PhysicalValues> has to be used.

• A PhysicalValue object consists of three different
information (value, physical property, comment).

• The PhysicalValue class is located within the
namespace VirtualLabAPI.Core.Numerics.

• Example:

Output: DataArray1D

• To generate DataArray1D several constructors are
available.

• Visual Studio supports with completion.
• Namespace: VirtualLabAPI.Core.Numerics

• Example:

Output: DataArray2D

• To generate DataArray2D several constructors are
available.

• Visual Studio supports with completion.
• Namespace: VirtualLabAPI.Core.Numerics

• Example:

Remarks on Data Arrays

• DataArray1D and DataArray2D are complex data
types which are used for standard output within
VirtualLab.

• The sampling of Data Arrays can be equidistant
as well as non-equidistant.

• To specify whether an equidistant or an non-
equidistant data array shall be generated, the
appropriate constructor has to be used.

Examples

• Examples of Programmable Detectors
– Snippet 028: Diffractive Optics Merit Functions for

Harmonic Fields Set Detector
– Snippet 027: Coherence Detector

http://www.lighttrans.com/documents_search.html?tx_abdownloads_pi1[sword]=snippet_028
http://www.lighttrans.com/documents_search.html?tx_abdownloads_pi1[sword]=snippet_028
http://www.lighttrans.com/documents_search.html?tx_abdownloads_pi1[sword]=snippet_027

Summary

• VirtualLab allows to include user defined
simulation techniques enhancing the field tracing
methods.

• Tutorials, Manual and Programming Reference
give useful information for the programming.

• Further support (to be paid, please contact
LightTrans for an offer) can be obtained:
– Courses on programming given by LightTrans.
– Support for software solution developed by customers.
– Customized software solutions developed by

LightTrans.

	Programmable Building Blocks, Components and Detectors of VirtualLab™
	Contents	
	Contents	
	Introduction
	Goal of Programming in VirtualLab
	Programming Language
	Programming Language
	Programming Language
	Some C# Syntax
	Levels for Programming in VirtualLab
	Programming within VirtualLabAPI.dll
	VirtualLab Modules
	VirtualLab Snippets
	VirtualLab Snippets
	Using external DLLs and user rights
	Restrictions
	Snippet-based Elements in VirtualLab
	Programmable (Mode Planar) Light Source
	Programmable Transmission
	Programmable Interface
	Programmable Medium
	Parameter Run: Programmable Mode
	ParameterRun: Programmable Mode
	Programmable Material
	Programmable Component
	Programmable Detector
	Programmable Components
	Concept of Programmable Component
	Concept of Programmable Component
	Edit Dialog of the Programmable Component
	Dialog of the Source Code Editor
	Input/Output: The HarmonicFieldsSet Class
	Input/Output: The HarmonicFieldsSet Class
	Input/Output: The HarmonicFieldsSet Class
	Input/Output: The ComplexAmplitude Class
	Input/Output: The ComplexAmplitude Class
	Programmable Component: Rotate and Shift
	Rotate and Shift: Result
	Development of Snippets and Modules
	VirtualLab Source Code Editor vs. Visual Studio
	Download and Install Visual Studio
	How to Setup Visual Studio Project
	How to Setup Visual Studio Project
	How to Setup Visual Studio Project
	Example: Syntax Completion
	Snippets and DLLs
	Advanced Settings
	Example: Using a DLL
	Example: Using a DLL
	Usage of C++ DLLs
	Programmable Detector
	Concept of Programmable Detector
	Edit Dialog of the Programmable Detector
	Detector Results
	Output: List<Physical Value>
	Output: DataArray1D
	Output: DataArray2D
	Remarks on Data Arrays
	Examples
	Summary

